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5.1 Introduction

This chapter is under construction and, hence, incomplete.

Additional information can be found in the publications mentioned in section 5.3
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5.2 Luminescence intensity dynamics in homogeneous systems
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Energy transfer in a rigid environment (Th. Förster, Z. Naturforschung 4a (1949) 321)

We assume that ND molecules D (donor) and Nac molecules A 
(acceptor) are randomly distributed in a large volume, so that 
effects due to the border of the rigid system can be neglected. 
The molecules D and A are assumed to be at fixed positions. This
means that they cannot move around. A is assumed to absorb at 
lower energy than  D, so that energy transfer can occur from D* 
to A but not in the reverse direction.

The donor is in its electronically excited state D* at time t = 0. It 
relaxes to the ground state D within a mean time τD* via radi-
atiative and radiationless processes, in absence of molecules A.

Any acceptor molecule Ai, at distance Ri from D*, gives an additional channel for relaxation, 
the rate constant of which is kEnT(i):

The same is true for energy transfer not only to Ai but to any of the Nac acceptor molecules.
From this we find that the decrease of excitation probability of D* can be expressed as follows:
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This means that we 
have Nac+1 independent
deactivation channels.
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This means that the excitation probability of
D* decays exponentially. 
This can also be expressed as follows:

Apart from „single molecule experiments“ we do not observe the decay of a single molecule D*,
but that of a large number of statistically distributed molecules which have  acceptor molecules 
at statistically distributed distances Ri. P(Ri)dRi is the probability that a given acceptor Ai is 
located in the environment of an electronically excited D* at distance between Ri and Ri+dRi. 
Then the decrease of the mean excitation energy <ρD*(t)> is:
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We now assume that the electronically excited D* is 
in the center of a sphere with radius RV and volume V. 
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We further assume a uniform statistical distribution 
of donors and acceptors in space, which means:
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This distribution is for all acceptors Ai the same. Hence, we have: J(t) = Ji(t) what leads to: 
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We use the following
abbreviation:
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Using this we find:
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the follow ing result:
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We develop this equation for the limiting value Nact∞.  This is reasonable since
we assume that the total number of molecules in the volume V is large. 
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We observe that, despite of the fact that each excited donor molecule D* decays strictly according to a 
mono-exponential law, the mean decay of an ensemble of donor molecules is not single exponential, 
but becomes faster with an increasing value for γ. We illustrate this in the following picture:.    
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is the average number of acceptor molecules in a sphere of radius R0.
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represents the critical concentration of acceptor molecules.
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Hence, γ can be expressed as ratio between the actual concentration
of acceptor molecules and the critical concentration c0: 

Using the following 
definition for γ:

we get:
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Comparison of the fluorescence decay of an electronically excited donor molecule 
D* in absence and in presence of acceptor molecules for a Förster radius of 60 Å.

We wonder about the intensity of the emission of the donor at constant donor concentration but varying  
acceptor concentration which we express by means of the parameter γ. This can be done by investigating 
the fluorescence yield as a function of γ, for otherwise constant conditions.

The fluorescence yield φD* of the donor is proportional to the integral, with the proportionality 
constant C, over the whole time range from t = 0 to t = ∞. We compare φD* with the 
luminescence yield in absence of acceptors φD*

0 .
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We find that the fluorescence quantum yield of the donor decreases fast under these 
conditions. That of the acceptor increases accordingly. 
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An alternative situation could be created if we could keep the ratio of the donor and
the acceptor concentration constant but increasing the mean distance between 
them. This is usually not possible to realize over a sufficiently large concentration 
range because of quenching phenomena. However, using zeolite L we have been 
able to realize such experiments.
Dye loaded zeolite materials do not meet the conditions imposed by this theory
completely, because of substantial anisotropy. But, at the moment we assume that 
the theory is applicably without any restriction. Hence, we describe the following 
experiments accordingly.  

Py+

N

O N 2HNH2
+

Ox+

The two molecules pyronine Py+ and oxonine Ox+ can be inserted into the channels
of zeolite L at about the same rate so that zeolite nanocrystals containing a random 
mixture of theses strongly luminescent donor (Py+) and acceptor molecules can be 
prepared. 

5.2.1 A demonstration experiment

Left: Scheme of a few channels of a zeolite L crystal containing acceptor A (red 
rectangles) and donor D  (green rectangles) molecules. Each rectangle marks 
a site which can be occupied by a dye molecules. Right: Main processes taking 
place after excitation of a donor: kEnT is the energy transfer rate constant, kF

A and 
kF

D are the fluorescence rate constants.

Taking into account radiationless processes, namely internal conversion kIC, 
intersystem crossing kISC, and bimolecular quenching kQ[Q] with a quencher Q,
the time dependent concentrations of the donor D and the acceptor A in the excited 
state S1, [DS1] and AS1], can be expressed as follows, where jabs is the number of 
photons absorbed per unit time. 
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The fluorescence quantum yield of the donor ΦF
D and of the acceptor ΦF

A under
stationary conditions is therefore:
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A quantity we can measure with good accuracy, even in a heterogeneous system, 
is the ratio between the two fluorescence quantum yields ΦF

D and ΦF
A. This ratio is 

equal to the ratio of the corresponding luminescence intensities IFD and IFA
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According to the results we have derived in chapter 3.4.1 the energy transfer
constant kEnT can be expressed as:

*

*
EnT

D
AA

D F

k
C p

φ
τ φ

=

5

9 ln(10)

128 LN
fc

π
=

= *

4 6
*

2
*

*
D A

DA

EnT
D

D A
Dn R

k fc Jν
κ φ

τ
*

6*

2
D A

DA

D A
R

G κ
=

3 1
*D AJ cm Mν

−=⎡ ⎤⎣ ⎦
pA is the occupation probability of the sites
of the zeolite with acceptor molecules.

0
*

A A
AF F

Ent Ent D FD D A
F F a

a

I kk k
I k k

τ φ= =
∑

Hence the constant C is given by: 

A
F

AD
F

I Cp
I

=

4

*
* *

*
EnT

D
D A D A A

Dn

fc
k J G pν

φ
τ

=

54 Å

68 Å43 Å

34 Å 93 Å



Gion Calzaferri Fall 2004

Electronic Excitation Energy Transfer. 
Lecture 5
Dynamics of energy transfer phenomena

7

* 1D
A
F

φ
φ

≅

A
F

AD
F

I Cp
I

=

C=250

*

*
EnT

D
A

D F

k
Cφ

τ φ
=

* 2.5D nsτ ≅

11 1
9

125 10
2.5 10EnTk s

s
−

−
= =

⋅

( ) ( ) ( )D D D A DA A Aλ λ λ= +

A) Steady state measurements

Decrease in donor fluorescence:

Transfer from the donor D to an acceptor A causes the quantum yield of the donor to 
decrease. The transfer efficiency ΦEnT (probability for energy transfer) is given by:
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where ΦD and Φ0
D are the donor fluorescence quantum yield in absence and presence

of acceptors respectively. 

Because only the relative quantum yields need to be determined, a single observation 
wavelength is sufficient and the latter is selected so that there is no emission from the
acceptor. If this condition can be fulfilled, the above equation can be expressed in terms 
of absorbance at the excitation wavelength λD and the fluorescence intensities of
the donor at λD

em in the absence and presence of acceptors, where A(λD) is the sum of
the absorption of the donor and of the acceptor at wavelength λD :

01 D
EnT

D
=

Φ
Φ −

Φ

Attention should be paid to inner filter effects caused by absorption of the acceptor at 
emission wavelength of the donor. Corrections might be necessary in some cases.

( )0
EnT 6

1
1 R R

Φ =
+

5.2.2 Data analysis of EnT phenomena in homogeneous media

(A1)

(see e.g. B. Valeur, Molecular Fluorescence, Wiley-VCH, 2002)
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Comparison between the absorption spectrum and the excitation spectrum

The corrected excitation spectrum, observed at the emission wavelength λA
em, is described by 

( , ) ( ) ( )
A

em
A A D TCI A Aλ λ λ λ= + Φ⎡ ⎤⎣ ⎦ where C is a constant (instrumental factor).

In the case of quantitative energy transfer (ΦEnT = 1) the excitation spectrum is equal to the
absorption spectrum, which is equal to the sum of the absorption spectrum of the acceptor
plus the absorption spectrum of the donor. 

But for any value of ΦEnT < 1, the excitation band corresponding to the donor is relatively
lower than the absorption band. 

The comparison of the absorption and excitation spectra can be done at two wavelengths
λD and λA. If there is no absorption of the donor at λA, we get the following two equations:
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The ratio of these two equations yields:

(A2)

Enhancement of acceptor fluorescence:
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The fluorescence intensity of the acceptor is enhanced in the presence of energy transfer. 
Comparison with the intensity I0 in absence of energy transfer provides the transfer 
efficiency ΦEnT:

In many cases the value of AA(λD) can be too small to be measured accurately. 

Equation (A.1) appears to allow the most straightforward determination of the efficiency of
energy transfer, ΦEnT. However, it cannot be used in the case of very low quantum yields.
Furthermore, quenching of the donor by the acceptor may occur. This can be checked by 
comparing the values obtained for ΦEnT by using (A.2) or (A.3). Time resolved measurements
provide an additional independent source of information.

(A3)
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B) Time resolved measurements

We first discuss the most simple cases where donors and acceptors can be regarded as
being statistically  distributed in a homogeneous way. We shall later investigate supra-
molecularly organized systems for which the following arguments may not apply.

Decay of the donor luminescence

D
Lk*        luminescence of the donorD D hν⎯⎯⎯→ +

EnTk* *       energy transferA D A D+ ⎯⎯⎯→ +

*           δ-pulsD D⎯⎯→

A
Lk*        luminescence of the acceptorA A hν⎯⎯⎯→ +

If the fluorescence decay of the donor following pulse excitation is a single exponential,
the measurement of the decay in presence (τD) and in absence (τD

0) of transfer 
is a straightforward method to determine the EnT transfer rate constant, the transfer 
efficiency and the donor-acceptor distance:

We assume, that the following reaction scheme applies:

0
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We now assume that the decay is a multi exponential in the absence of acceptors, 
because of some in-homogeneity of the microenvironment: 

/( ) Jt
D J

J
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In this case, if the donor fluorescence is not too far from a single exponential, the EnT
transfer efficiency can be calculated by using the following average decay times in 
absence and presence  of acceptors: 

2
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1 D

EnT
D
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τ
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Note that for the calculation of the EnT transfer efficiency, it is incorrect to use the 
intensity-averaged decay time

J J
J

J
J

α τ
τ

α
=
∑
∑

because such an integrated intensity is not relevant to a dynamic process like energy 
transfer. In fact, the signal measured at a certain time after excitation is proportional to 
the number of donor molecules still excited at that time and able to transfer their energy 
to an acceptor molecule; therefore the amplitude average should be used.
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Increase of the acceptor luminescence

The transfer rate can also be determined from the increase in the acceptor fluorescence 
following pulse excitation of the donor. The change in excited acceptor concentration
obeys in the simplest case the following differential equations:
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The solution of these equations, with the initial conditions [D*](t=0) =[D*]0, is:
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which simplifies, if no acceptors are directly excited with the pulse:  
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C) Increase of the acceptor luminescence, a detailed derivation of the formula

D

ICk D
IC*        thermal deactvation                       k [ *]D D h Dν+⎯⎯→

EnTk* *        energy transfer                               [ *]EnTA D A D k D+ +⎯⎯→
D*             δ-puls                                            (1-A ) phA cα⎯⎯→ &

( )A A

F ICk k A A
F IC*        thermal deactivation             k k [ *]A hα ν α+

+ +⎯⎯⎯→

D*             δ-puls                                            A phD D c⎯⎯→ &

D

Lk D
L*         luminescence of the donor            k [ *]D D h Dν+⎯⎯→

A

Lk A
L*        luminescence of the acceptor         k [ *]A A h Aν+⎯⎯→

A

ICk A
IC*        thermal deactivation                      k [ *]A A h Aν+⎯⎯→

We include the possibility of direct excitation of the acceptors at the excitation wavelength and we name 
the directly excited acceptors A not as A* but as α* because this facilitate the calculations. The kinetic 
parameters of A* and of α* are the same, however.

[ ] ( )[ ]*
*

EnT

D D
D ph L IC

d D
A k k D

dt
c k= − + +&

[ ] ( )[ ]= − − +&
*

(1 *) A A
D ph L IC

d
A k

dt
c k

α
α

[ ] [ ] ( )[ ]*
* *

EnT

A A
L IC

d A
k D k A

dt
k= − +

Considering a δ-puls excitation, the terms: & &
D D

 A and  A   (1- )
ph ph

c c

can be substituted by the initial conditions: [D*]0 = [D*](t=0) and [A*]0 = [A*](t=0) 

= + = +Using  and we can write: D D D A A A
L IC L ICk k k k k k

[ ] [ ] ( )[ ]= − +
*

* *0 T

d D DD k k D
dt

[ ]
[ ]

−
=0

0

* 1

*
D

D

A

D A

α

[ ] [ ] [ ]*
* *

EnT

d A Ak D k A
dt

= −

The solution of the equation for [D*] is trivial and 
the equation for α* can be solved independently
because energy migration among the excited 
acceptors does not influence the decay of α*.

[ ] [ ]= −
*

*0[ *]d Ak
dt

α
αα −= ⎡ ⎤⎣ ⎦0[ *]( ) *

Ak tt eα α

What remains is to find the solution for [A*]. Inserting [D*](t) we find: 

[ ]0
( )[ *]( ) *

D
EnTk k tD t D e− +=

[ ] ( )0 ( )*
* ( )

( )
EnT D

EnT A
k k k t k t

D
A EnT

D
A t e e

k k k
− + −= −⎡ ⎤⎣ ⎦ − +

[ ] [ ] [ ]0

* ( ) **
EnT

D
EnT

d A k k t Ak k A
dt

D e− +
= −

This is an inhomogeneous, linear differential equation of the type:

The solution of this equation is:

−+ = ctdy ay be
dt

a = kA, b = kEnt[D*]0, c = (kEnT+kD) 

( )− −= −
−

( ) ct atby t e e
a c
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( )0( )
D

EnTk k t
D Di t i e− +=

( )
EnT

D
A EnT

k
k k k

κ =
− +

= +* *( ) ( ) ( )A Ai t i t i tα

[ ] ( )0 ( )
0

*
' ( ) *

( )
EnT D A

EnT A
k k k t k t k t

A D
A EnT

D
i t e e e

k k k
α− + − −= − + ⎡ ⎤⎣ ⎦− +

( )( )( )
1

( )
D A

EnT Ak k t k t k tEnT D
A D

DA EnT
i t

k Ae e e
Ak k k

− + − −=
−

− +
− +

( )( )
1

( ) ( )
D A

EnTk k t k tEnT D EnT
A D D

DA EnT A EnT
i t

k A ke e
Ak k k k k k

− + −=
⎛ ⎞−

+ −⎜ ⎟⎜ ⎟− + − +⎝ ⎠

( )( )
1 DA

EnTk k tk tD
A

D
i t

A e e
A

κ κ − +−=
⎛ ⎞−

+ −⎜ ⎟
⎝ ⎠

Some technical details.

Solution of: 

− − −− + =ct ct ctb bc e a e be
a a

α α

a, b and c are positive numbers with dimension, 
s-1, mol/s and s-1, respectively.

Particulate solution:

−+ = ctdy ay be
dt

= 0dy
dt

−= 0
at

hy y eSolution of the homogeneous equation: + = 0dy ay
dt

From this we guess, that the following 
is a particulate solution:

( )
=

−0
bqy

c a

Inserting into the original equation leads to:

( )
−=

−
ct

p
by e

a c( )
=

−
a

a c
α− + =

1 1c
a

α α ⎛ ⎞− + =⎜ ⎟
⎝ ⎠

1 1 1c
a

α

Solution:

−= ctby e
a −= ct

p
by e
a

α

y(t=0) = 0,  because [A*](t=0) = 0, hence:

( ) ( )− −= −
−

ct atby e e
a c

( )
− −= +

−
0 0

00 c ab e qy e
a c

( )
− −= + = +

− 0
ct at

p h
by y qy e qy e

a c
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5.3 Time resolved measurements in organized systems

5.3.1 Selected systems

In this chapter I refer to some of our publications.

Electronic Excitation Energy Migration in a Photonic Dye-Zeolite Antenna
Mikali Yatskou, Michel Pfenniger, Marc Meyer, Stefan Huber, Gion Calzaferri
ChemPhysChem, 2003, 4, 2003, 567-587.
Energy Transfer from Dye-Zeolite L Antenna Crystals to Bulk Silicon
Stefan Huber, Gion Calzaferri
ChemPhysChem 2004, 5, 239-242.

Injecting Electronic Excitation Energy Into an Artificial Antenna System by a 
Ru2+ Complex
Olivia Bossart, Luisa De Cola, Steve Welter, and Gion Calzaferri
Chem. Eur. J. 2004, in press

Organization implies transfer of a signal in a specific way  
to a specific place.

5.3.2 Distribution of the chromophores in a host-guest material
Electronic Excitation Energy Migration in a Photonic Dye-Zeolite Antenna
Mikalai Yatskou, Michel Pfenniger, Marc Meyer, Stefan Huber, Gion Calzaferri
ChemPhysChem, 2003, 4, 2003, 567-587.

Nspacer

  

A Monte Carlo based Mathcad
program 
MC-Distribution.mcd
will be provided 
(must first be translated from 
German to English).

Nspacer
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5.3.3 Markow chain treatment of EnT a host-guest material

Transfer of electronic excitation energy between dye molecules in the channels of
zeolite L 
Niklaus Gfeller, Silke Megelski and Gion Calzaferri
J. Phys. Chem. B. 104 (1998) 2433-2436.

A Mathcad program Makow EnToneD.mcd
will be provided (must first be translated from German to English).

5.4 3-dimensional, 2-dimensional, and 1-dimensional EnT

Claudia Minkoski, Gion Calzaferri, in preparation

Insulator
Semiconductor

Energy Transfer

oriented monolayers
(disc-shaped crystals)

Photonic Antenna

The theory for describing such photonic antenna systems is under construction.


